Contents

Preface to the C++ Edition xi

Preface to the Second Edition xii

Preface to the First Edition xv

License Information xvii

Computer Programs by Chapter and Section xxi

1 Preliminaries 1

1.0 Introduction 1
1.1 Program Organization and Control Structures 5
1.2 Some C++ Conventions for Scientific Computing 16
1.3 Implementation of the Vector and Matrix Classes 25
1.4 Error, Accuracy, and Stability 31

2 Solution of Linear Algebraic Equations 35

2.0 Introduction 35
2.1 Gauss-Jordan Elimination 39
2.2 Gaussian Elimination with Backsubstitution 44
2.3 LU Decomposition and Its Applications 46
2.4 Tridiagonal and Band Diagonal Systems of Equations 53
2.5 Iterative Improvement of a Solution to Linear Equations 58
2.6 Singular Value Decomposition 62
2.7 Sparse Linear Systems 74
2.8 Vandermonde Matrices and Toeplitz Matrices 93
2.9 Cholesky Decomposition 99
2.10 QR Decomposition 101
2.11 Is Matrix Inversion an \(N^3 \) Process? 105

3 Interpolation and Extrapolation 108

3.0 Introduction 108
3.1 Polynomial Interpolation and Extrapolation 111
3.2 Rational Function Interpolation and Extrapolation 114
3.3 Cubic Spline Interpolation 116
3.4 How to Search an Ordered Table 120
3.5 Coefficients of the Interpolating Polynomial 123
3.6 Interpolation in Two or More Dimensions 126
4 Integration of Functions 133
 4.0 Introduction 133
 4.1 Classical Formulas for Equally Spaced Abscissas 134
 4.2 Elementary Algorithms 141
 4.3 Romberg Integration 144
 4.4 Improper Integrals 146
 4.5 Gaussian Quadratures and Orthogonal Polynomials 152
 4.6 Multidimensional Integrals 166

5 Evaluation of Functions 171
 5.0 Introduction 171
 5.1 Series and Their Convergence 171
 5.2 Evaluation of Continued Fractions 175
 5.3 Polynomials and Rational Functions 179
 5.4 Complex Arithmetic 182
 5.5 Recurrence Relations and Clenshaw’s Recurrence Formula 184
 5.6 Quadratic and Cubic Equations 189
 5.7 Numerical Derivatives 192
 5.8 Chebyshev Approximation 196
 5.9 Derivatives or Integrals of a Chebyshev-approximated Function 201
 5.10 Polynomial Approximation from Chebyshev Coefficients 203
 5.11 Economization of Power Series 204
 5.12 Padé Approximants 206
 5.13 Rational Chebyshev Approximation 209
 5.14 Evaluation of Functions by Path Integration 213

6 Special Functions 217
 6.0 Introduction 217
 6.1 Gamma Function, Beta Function, Factorials, Binomial Coefficients 218
 6.2 Incomplete Gamma Function, Error Function, Chi-Square Probability Function, Cumulative Poisson Function 221
 6.3 Exponential Integrals 227
 6.4 Incomplete Beta Function, Student’s Distribution, F-Distribution, Cumulative Binomial Distribution 231
 6.5 Bessel Functions of Integer Order 235
 6.6 Modified Bessel Functions of Integer Order 241
 6.7 Bessel Functions of Fractional Order, Airy Functions, Spherical Bessel Functions 245
 6.8 Spherical Harmonics 257
 6.9 Fresnel Integrals, Cosine and Sine Integrals 259
 6.10 Dawson’s Integral 264
 6.11 Elliptic Integrals and Jacobian Elliptic Functions 265
 6.12 Hypergeometric Functions 275

7 Random Numbers 278
 7.0 Introduction 278
 7.1 Uniform Deviates 279
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2 Transformation Method: Exponential and Normal Deviates</td>
<td>291</td>
</tr>
<tr>
<td>7.3 Rejection Method: Gamma, Poisson, Binomial Deviates</td>
<td>294</td>
</tr>
<tr>
<td>7.4 Generation of Random Bits</td>
<td>300</td>
</tr>
<tr>
<td>7.5 Random Sequences Based on Data Encryption</td>
<td>304</td>
</tr>
<tr>
<td>7.6 Simple Monte Carlo Integration</td>
<td>308</td>
</tr>
<tr>
<td>7.7 Quasi- (that is, Sub-) Random Sequences</td>
<td>313</td>
</tr>
<tr>
<td>7.8 Adaptive and Recursive Monte Carlo Methods</td>
<td>320</td>
</tr>
<tr>
<td>8 Sorting</td>
<td>332</td>
</tr>
<tr>
<td>8.0 Introduction</td>
<td>332</td>
</tr>
<tr>
<td>8.1 Straight Insertion and Shell’s Method</td>
<td>333</td>
</tr>
<tr>
<td>8.2 Quicksort</td>
<td>336</td>
</tr>
<tr>
<td>8.3 Heapsort</td>
<td>339</td>
</tr>
<tr>
<td>8.4 Indexing and Ranking</td>
<td>341</td>
</tr>
<tr>
<td>8.5 Selecting the Mth Largest</td>
<td>344</td>
</tr>
<tr>
<td>8.6 Determination of Equivalence Classes</td>
<td>348</td>
</tr>
<tr>
<td>9 Root Finding and Nonlinear Sets of Equations</td>
<td>351</td>
</tr>
<tr>
<td>9.0 Introduction</td>
<td>351</td>
</tr>
<tr>
<td>9.1 Bracketing and Bisection</td>
<td>354</td>
</tr>
<tr>
<td>9.2 Secant Method, False Position Method, and Ridders’ Method</td>
<td>358</td>
</tr>
<tr>
<td>9.3 Van Wijngaarden–Dekker–Brent Method</td>
<td>363</td>
</tr>
<tr>
<td>9.4 Newton-Raphson Method Using Derivative</td>
<td>366</td>
</tr>
<tr>
<td>9.5 Roots of Polynomials</td>
<td>373</td>
</tr>
<tr>
<td>9.6 Newton-Raphson Method for Nonlinear Systems of Equations</td>
<td>383</td>
</tr>
<tr>
<td>9.7 Globally Convergent Methods for Nonlinear Systems of Equations</td>
<td>387</td>
</tr>
<tr>
<td>10 Minimization or Maximization of Functions</td>
<td>398</td>
</tr>
<tr>
<td>10.0 Introduction</td>
<td>398</td>
</tr>
<tr>
<td>10.1 Golden Section Search in One Dimension</td>
<td>401</td>
</tr>
<tr>
<td>10.2 Parabolic Interpolation and Brent’s Method in One Dimension</td>
<td>406</td>
</tr>
<tr>
<td>10.3 One-Dimensional Search with First Derivatives</td>
<td>410</td>
</tr>
<tr>
<td>10.4 Downhill Simplex Method in Multidimensions</td>
<td>413</td>
</tr>
<tr>
<td>10.5 Direction Set (Powell’s) Methods in Multidimensions</td>
<td>417</td>
</tr>
<tr>
<td>10.6 Conjugate Gradient Methods in Multidimensions</td>
<td>424</td>
</tr>
<tr>
<td>10.7 Variable Metric Methods in Multidimensions</td>
<td>430</td>
</tr>
<tr>
<td>10.8 Linear Programming and the Simplex Method</td>
<td>434</td>
</tr>
<tr>
<td>10.9 Simulated Annealing Methods</td>
<td>448</td>
</tr>
<tr>
<td>11 Eigensystems</td>
<td>461</td>
</tr>
<tr>
<td>11.0 Introduction</td>
<td>461</td>
</tr>
<tr>
<td>11.1 Jacobi Transformations of a Symmetric Matrix</td>
<td>468</td>
</tr>
<tr>
<td>11.2 Reduction of a Symmetric Matrix to Tridiagonal Form:</td>
<td></td>
</tr>
<tr>
<td>Givens and Householder Reductions</td>
<td>474</td>
</tr>
<tr>
<td>11.3 Eigenvalues and Eigenvectors of a Tridiagonal Matrix</td>
<td>481</td>
</tr>
<tr>
<td>11.4 Hermitian Matrices</td>
<td>486</td>
</tr>
<tr>
<td>11.5 Reduction of a General Matrix to Hessenberg Form</td>
<td>487</td>
</tr>
</tbody>
</table>
Contents

11.6 The QR Algorithm for Real Hessenberg Matrices 491
11.7 Improving Eigenvalues and/or Finding Eigenvectors by Inverse Iteration 498

12 Fast Fourier Transform 501

- 12.0 Introduction 501
- 12.1 Fourier Transform of Discretely Sampled Data 505
- 12.2 Fast Fourier Transform (FFT) 509
- 12.3 FFT of Real Functions, Sine and Cosine Transforms 515
- 12.4 FFT in Two or More Dimensions 526
- 12.5 Fourier Transforms of Real Data in Two and Three Dimensions 530
- 12.6 External Storage or Memory-Local FFTs 536

13 Fourier and Spectral Applications 542

- 13.0 Introduction 542
- 13.1 Convolution and Deconvolution Using the FFT 543
- 13.2 Correlation and Autocorrelation Using the FFT 550
- 13.3 Optimal (Wiener) Filtering with the FFT 552
- 13.4 Power Spectrum Estimation Using the FFT 555
- 13.5 Digital Filtering in the Time Domain 563
- 13.6 Linear Prediction and Linear Predictive Coding 569
- 13.7 Power Spectrum Estimation by the Maximum Entropy (All Poles) Method 577
- 13.8 Spectral Analysis of Unevenly Sampled Data 580
- 13.9 Computing Fourier Integrals Using the FFT 589
- 13.10 Wavelet Transforms 596
- 13.11 Numerical Use of the Sampling Theorem 611

14 Statistical Description of Data 614

- 14.0 Introduction 614
- 14.1 Moments of a Distribution: Mean, Variance, Skewness, and So Forth 615
- 14.2 Do Two Distributions Have the Same Means or Variances? 620
- 14.3 Are Two Distributions Different? 625
- 14.4 Contingency Table Analysis of Two Distributions 633
- 14.5 Linear Correlation 641
- 14.6 Nonparametric or Rank Correlation 644
- 14.7 Do Two-Dimensional Distributions Differ? 650
- 14.8 Savitzky-Golay Smoothing Filters 655

15 Modeling of Data 661

- 15.0 Introduction 661
- 15.1 Least Squares as a Maximum Likelihood Estimator 662
- 15.2 Fitting Data to a Straight Line 666
- 15.3 Straight-Line Data with Errors in Both Coordinates 671
- 15.4 General Linear Least Squares 676
- 15.5 Nonlinear Models 686
Preface to the C++ Edition

C++ has gradually become the dominant language for computer programming, displacing C and Fortran even in many scientific and engineering applications. This version of *Numerical Recipes* contains the entire text of the Second Edition with all the programs presented in C++.

C++ poses special problems for numerical work. In particular, it is difficult to treat vectors and matrices in a manner that is simultaneously efficient and yet allows programming with high-level constructs. The fact that there is still no universally accepted standard library for doing this makes the problem even more difficult for authors of a book like this one. In Chapter 1 and the Appendices we describe how we have solved this problem. The default option is for you, the reader, to use a very simple class library that we provide. You can be up and running in a few minutes. We also show you how you can alternatively use any other matrix/vector class library of your choosing. This may take you a few minutes to set up the first time, but thereafter will provide transparent access to the Recipes with essentially no loss in efficiency.

We have taken this opportunity to respond to a clear consensus from our C readers, and converted all arrays and matrices to be “zero-based.” We have also taken this opportunity to fix errors in the text and programs that have been reported to us by our readers. There are too many people to acknowledge individually, but to all who have written to us we are very grateful.

September 2001

William H. Press
Saul A. Teukolsky
William T. Vetterling
Brian P. Flannery