more, but at that time the realization of the possible risk of liver angiosarcoma associated with severe exposure led to the lowering of the permissible levels to a maximum of very few parts/106. This background reveals an extensive analytic-chemical problem area.

In the present monograph, an impressive body of experts has now sought: (i) to critically evaluate techniques for measuring and monitoring vinyl chloride; (ii) to recommend reliable methods of analysis for the determination (a) of vinyl chloride in air by gas chromatography (GC), (b) of the 8th time-weighted average concentration of vinyl chloride in the atmosphere, using either a personal sampler pump and a carbon trap or a personal monitor equipped with detector tube, (c) of traces of vinyl chloride in air by trapping followed by GC, (d) of the 24h time-weighted average concentration of vinyl chloride in air by trapping followed by GC, and (e) of vinyl chloride in aqueous liquids, in poly(vinyl chloride) and in food by headspace sampling followed by GC.

It is rather disappointing that the measurement of pertinent vinyl chloride metabolites (viz. N-acetyl-S-(2-hydroxyethyl)cysteine and thiodiglycollic acid) in the body fluids of exposed subjects is unmentioned, as this would have introduced the powerful techniques of GC—mass spectrometry and mass fragmentometry that are available for the purpose.

D. E. HATHWAY


This is a detailed account of the work undertaken in the 5 major groups of antibiotics that have been shown to have antitumour activity. The emphasis is on the chemistry of these agents, with clear structural formulae, their synthesis and properties, with detailed listings of their antitumour activities in the standard tumour systems of P388 and L1210, as well as distribution data in different animal species.

This first volume deals in detail with the actinomycins, anthracyclines, aureolic acid group (mithramycins), bleomycin and phleomycin, and the mitomycins and porfiromycins.

The work effectively summarizes the information up to 1978, and a subsequent volume is intended to cover antitumour antibiotics not yet described. There is an excellent detailed index, and the book is highly commended as a valuable reference source and an inspiration for experimental chemotherapist and medical oncologist alike, concerned with the development and application of this important field of antitumour agents.

B. W. Fox


This book presents the proceedings of the 8th International Symposium of the Princess Takamatsu Cancer Research Fund, Tokyo, 1977. The chapters are a mixture of reviews by leading authorities on the clinical approach to the treatment of various forms of cancer and detailed experimental data, mainly concerned with the pharmacology of anti-cancer drugs. The book is now 2 years out of date. There is a major and interesting contribution by the Japanese, with a heavy emphasis on antibiotic anti-cancer therapy. Umezawa reviews this approach and discusses new agents which enhance tumour immunity. Ichikawa discusses the bleomycins and Hata the mitomycins. I found these articles useful since the Japanese literature is not readily available to us. Reviews of the platinum compounds, nitrosoureas and folate antagonists, although by leading authorities, are less useful since several reviews of this nature have already been published. General reviews on approaches to the long-term control of acute leukaemia, and chemotherapy (Freireich), advances in breast cancer (Bonadonna) and testicular cancer (Muggia) were all well written but, again, reviews have recently been published by these authors or other leading authorities.

For these reasons I do not feel this book is a necessary purchase for an individual medical oncologist or experimental chemotherapist, but would prove useful for the next 2 years or so in a library used by oncologists and those interested in anti-cancer chemotherapy.

D. CROWTHER
Antibiotics transformed medicine. The discovery of antibiotics began by accident. On the morning of September 3rd, 1928, Professor Alexander Fleming was having. In 1941, a doctor, Charles Fletcher, at a hospital in Oxford had heard of their work. He had a patient who was near to death as a result of bacteria getting into a wound. Fletcher used some of Chain’s and Florey’s penicillin on the patient and the wound made a spectacular recovery. Unfortunately, Fletcher did not have enough penicillin to fully rid the patient’s body of bacteria and he died a few weeks later as the bacteria took a hold. However, penicillin had shown what it could do on what had been a lost cause. The only reason the patient did not survive was because they did not have enough of Antibiotic resistance is spreading faster than the introduction of new compounds into clinical practice, causing a public health crisis. Most antibiotics were produced by screening soil microorganisms, but this limited resource of cultivable bacteria was overmined by the 1960s. Synthetic approaches A new antibiotic kills pathogens without detectable resistance. Nature. 2015 Jan 22:517(7535):455-9. doi: 10.1038/nature14098. Advanced embedding details, examples, and help! No_Favorite. share. flag. Flag this item for Graphic Violence. Graphic Sexual Content. Remers, William A. (William Alan), 1932-. Publication date. 1979. Topics. Antineoplastic antibiotics, Antibiotiques, Anticanceaux, Cytostatikum, Antibiotikum, Pharmazeutische Chemie, Tumor, Antibiotics, Antineoplastic -- pharmacology, Anti-Bacterial Agents. Publisher. New York : Wiley. Collection. inlibrary; printdisabled; internetarchivebooks. "A Wiley-Interscience publication." Includes bibliographical references and index. Access-restricted-item. true. Addeddate. 2020-07-16 11:14:35. Boxid.