Kurt Gödel's Mathematical and Scientific Perspective of the Divine: A Rational Theology

by Héctor Rosario, Ph.D.
Department of Mathematics
University of Puerto Rico, Mayagüez Campus
November 7, 2006

Kurt Gödel, the renowned mathematical logician of the twentieth century, had a profound rational theology worthy of serious consideration by scientists, mathematicians, and other thinkers inclined to the use of reason and observation to draw conclusions. “The world is rational,” (Wang, 1996: 316) asserted Gödel, evoking philosophical theism, “according to which the order of the world reflects the order of the supreme mind governing it” (Yourgrau, 2005: 104-105).

Gödel is best known for his celebrated incompleteness theorems, perhaps some of the most profound and influential mathematical results ever. These theorems are an “extraordinary comment on the relationship between the mission of mathematics and the manner in which it formulates its deductions” (Mazur, 2006: 3-4). They have been interpreted as a limitation on rationality since a possible semantics for the results is that in any axiomatic and consistent system, there are truths that cannot be proved within the system. This has very profound philosophical implications that have shattered the hopes of many a previous mathematician and philosopher. Frustration notwithstanding, “[Gödel’s] works on the limits of logic have inspired awe, respect, endless development and speculation among mathematicians, and indeed among all theoretical scientists” (Davis, 2002: 22).

Among the theoretical scientists influenced by Gödel was his friend Albert Einstein, an aspect somewhat obscured by history. During the years of 1940 to 1955 they developed an intimate relationship as colleagues at the Institute for Advanced Studies in Princeton. In fact, according to colleague Oskar Morgenstern, when Einstein had lost enthusiasm in his own work, he went to his office “just to have the privilege of walking home with Kurt Gödel” (Wang, 1996: 57). The preeminent logician was, according to Institute colleague and physicist Freeman Dyson, “the only one who walked and talked on equal terms with Einstein” (Dyson, 1993: 161). However, I would argue that Gödel’s intellect was in many ways much subtler than Einstein’s, in philosophy and perhaps even in physics. Gödel, a self-confessed theist, as his correspondence with Burke D. Grandjean attests, developed an ontological argument in an attempt to prove the existence of God by accepted rules of inference. He chose the framework of modal logic, a useful formal language for proof theory which also has important applications in computer science. This logic is the study of the deductive behavior of the expressions ‘it is necessary that’ and ‘it is possible that,’ which arise frequently in ordinary language. However, according to his biographer John Dawson, he never published his ontological argument for fear of ridicule by his peers.

An important aspect of Gödel’s theology – one that has been greatly overlooked by those studying his works – is that not only was he a theist but a personalist. Gödel was not a pantheist as some apologetic thinkers may portray him. To be precise, he rejected the
notion that God was impersonal, as God was for Einstein. Einstein believed in “Spinoza’s God who reveals himself in the harmony of all that exists, not in a God who concerns himself with the fate and actions of men” (Einstein, 1929). Gödel in turn thought “Einstein’s religion [was] more abstract, like Spinoza and Indian philosophy. Spinoza's god is less than a person; mine is more than a person; because God can play the role of a person” (Wang, 1996: 152). This is significant since a god who lacks the ability to “play the role of a person” would lack the property of omnipotence and thus violate a defining property universally accepted as pertaining to God. Therefore if God exists, reasoned Gödel, then He must at least be able to play the role of a person. The question was how to determine the truth value of the antecedent in the previous statement. Thus, Gödel endeavored to settle the existence of God rationally.

A relevant issue in Gödel’s discussions on the Divine with Einstein is his mention of “Indian philosophy.” However, Gödel considers Spinoza’s concept of God and the “Indian” concept to be in the same category, which is not a correct understanding of these notions. Spinoza’s stance on God is impersonal, akin to Śankarācārya’s monism (c. 788-820 CE). Unfortunately, although familiar with such Indian theological view, Gödel was apparently unaware of the philosophical conclusions of Rāmānuja (1017-1137 CE) and Madhava (1238-1317 CE), who would also reject Spinoza’s god. The rejection comes not because they deny God’s presence in all that exists, but because such view is considered subservient to one in which a personal relationship with the Supreme can be established and nurtured. Taking omnipotence seriously, “playing the role of a person” is one of God’s unlimited potencies which they do not compromise in their theology.

Certainly, Gödel was also unaware of the philosophy of Caitanya Mahāprabhu (1486-1534 CE), who follows Rāmānuja and Madhava in the essential points. However, the detailed description and practice of divine love in service of purushottama – devotional service to the Supreme Person – given by Caitanya Mahāprabhu and his followers arguably make this the most sublime theology the world has ever witnessed. In it Gödel would have found his philosophical conclusions realized in completion five centuries earlier.

In physics, Gödel’s contributions were praised by Einstein. Physics was not a detour Gödel took to amuse himself, but rather part of his philosophical fabric. In 1949 Gödel expressed his ideas in an essay unkindly destined to oblivion. This essay, in Einstein’s own words, “constitutes […] an important contribution to the general theory of relativity, especially to the analysis of the concept of time” (Schilpp, 1949: 687). Unfortunately, even with Einstein’s high estimation of Gödel’s work, modern physicists have been prompt to discard Gödel’s ideas, trying without success to find an error in his physics (Yourgrau, 2005: 7-8). The conclusions that Gödel draws from Einstein’s Theory of Relativity are too threatening to the ordinary physicist who is shocked by Gödel’s unsuspected solutions to the field equations of general relativity, solutions in which time undergoes a dreadful transformation. For instance, Gödel concluded that time travel is indeed theoretically possible, rendering time, as we know it, meaningless. Time, “that mysterious and seemingly self-contradictory being,” as Gödel put it, “which, on the other hand, seems to form the basis of the world’s and our own existence,” turned out in the
end to be the world’s greatest illusion (Yourgrau, 2005: 111). For Gödel, time was the philosophical question, but I am unaware of any direct connection Gödel might have made between time and God. However, his belief in the afterlife might give some insight.

Gödel expressed his belief in the hereafter in the following terms, “I am convinced of the afterlife, independent of theology. If the world is rationally constructed, there must be an afterlife” (Davis, 2002: 22). “His arguments were, as always, rationally based on the principle that the world and everything in it has meaning, or reasons. This is closely related to the causality principle that underlies all of science: Everything has a cause, and events don’t just ‘happen’” (Casti & DePauli, 2000: 87).

Notice Gödel’s reference to rationality. An ultra-rationalist like Gödel was a theist, a personalist and a believer in the afterlife, and appealed to reason as his witness. Atheists and agnostics usually portray their philosophy as rational discarding the theist conclusion as a mere psychological refuge of the ignorant or self-deceiver. Nevertheless, ultra-rational thinkers like Gödel, Leibniz, and Descartes have reached the theist conclusion. Is there an apparent disconnect between rational thinkers and rational thought or is it that the theists’ view is the rational conclusion, even if often embraced by fanatics in unimaginably irrational ways?

An objector may argue that science and mathematics are outside the realm of faith, where theology may allegedly belong. The objector may further the position that mathematics and theology – or science and theology – are independent human experiences that must be kept separate. However, a closer look at the foundations of physics and mathematics, as well as to the history of the subjects, seems to yield a different conclusion. This closer look reveals an invisible membrane that conjoins these experiences.

Some scholars opine that even though great syntheses of science/mathematics and theology have occurred in the past, “a significant marriage” of them is yet to occur (Davis, 2002: 27). Such marriage will only manifest when we have a proper understanding of faith as a common denominator of science, mathematics, and theology. Consider the nature of axioms in any formal system, including mathematical systems. Once the axioms have been chosen, the accepted rules of inference can potentially be entered into a computer to verify the validity of any argument, but the axioms themselves are arbitrary. For instance, the Axiom of Choice has troubled many mathematicians since it was formulated by Ernst Zermelo in 1904. In addition, the elimination of the parallel lines postulate in Euclid’s rendition of geometry gave rise to other geometries. One of these geometries is fundamental in the formulation of Einstein’s Theory of Relativity. Axioms may be useful, but there is no inherent truth in them. Changing them alters the system and the true sentences produced by such system. If we consider that at present all that mathematicians have are “axiom systems for which no one can give a convincing demonstration of consistency,” the situation turns even more discouraging (Nelson, 2002: 5). Furthermore, many thinkers believe that mathematics is the most certain means of human acquisition of knowledge, the sacred pinnacle of intellectuality. “This misperception leads to such embarrassments as the pseudo-Euclidean form Spinoza gave to his Ethics. These writers are too pedestrian in their view of mathematics and yet they
give us too much credit” (Nelson, 2002: 5). “Why do we mathematicians, makers like poets and musicians, describe what we do as discovery rather than invention? This is the Pythagorean religion” (Nelson, 1995: 3). According to Edward Nelson, most mathematicians are devout followers of this religion, although they attribute it to Plato, born over fifty years after Pythagoras’ death.

Moreover, faith plays a vital role in science as well. When considering the nature of energy and matter, the laws of physics are taken as axiomatic: they are inherent, immutable and eternal laws, else the theoretical knowledge we have of the world collapses. Certainly, if we believe “the world is rational” and imbued with inherent order, as Gödel did, then taking the laws of physics as axiomatic might be acceptable; yet, as in theology, faith remains a preliminary step to understanding.

Many scientists would argue that even though they cannot completely (or partially) explain the origin of the universe – or the origin of life, or the nature of consciousness, or the nature of time – the answers would certainly not involve God. They have placed their faith in their cognitive processes and in their colleagues. They submit to those authorities; but faith they have, nonetheless.

If we define faith as “belief based on the authority of the information source,” be it Scripture, scientists, a friend, a teacher, a digital picture, a DNA test, our own cognition and experiences, or even politicians (for the really insane), we will realize that faith plays an essential role in the development (or destruction) of knowledge. Why is it acceptable in science and mathematics to have faith, not only in the axioms or laws of nature, but also in the peer-review process and the causality principle, while faith in the religious realm is viewed as superstitious at best? As Gödel states, “Religions are, for the most part, bad, but religion is not” (Wang, 1996: 316).

George Berkeley had already questioned this attitude in 1734. In The Analyst he wrote:

> Whether Mathematicians, who are so delicate in religious Points, are strictly scrupulous in their own Science? Whether they do not submit to Authority, take things upon Trust, and believe Points inconceivable? Whether they have not their Mysteries, and what is more, their Repugnancies and Contradictions?

Perhaps, not being a mathematician himself, Berkeley was considered “too pedestrian” in his view of mathematics, which accounted for the dismissal of his ideas. To counter similar objections, rational theists have tried to justify their beliefs by submitting to the accepted rules of inference. However, one may argue that “[i]nferential arguments are employed in a case where the existence of the thing to be inferred is considered of doubtful character” (Sinha, 1999: 5). Yet, as remarked by Wittgenstein, a philosophical antagonist of Gödel’s, those who want to provide an intellectual basis for theism furnish arguments in favor of the existence of God, although their actual belief is not based on the argument itself (Davis, 2002: 22). Besides, the experience of the divine might well be one of the limitations of rationality.
Gödel’s ontological argument, as most ontological arguments, is based on St. Anselm’s eleventh century work *Proslogion*. Anselm defines God as “that thing which nothing greater can be thought” (Small, 2006: 16). He asserts that even the atheist would agree that God’s existence is possible, but that such existence is simply a contingent falsehood. (Small, 2006: 16). Just like Michelangelo may have envisioned his David before metamorphosing marble, the atheist might argue that he can conceive of a world in which God exists even if that world is not the true world.

In the seventeenth century, René Descartes, using an analogy with Euclidean geometry, followed in St. Anslem’s footsteps. In the *Fifth Meditation*, Descartes furthers the claim that “there is no less contradiction in conceiving a supremely perfect being who lacks existence than there is in conceiving a triangle whose interior angles do not sum up to 180 degrees. Hence, [...] since we do not conceive a supremely perfect being – we do have the idea of a supremely perfect being – we must conclude that a supremely perfect being exists” (Oppy, 2002). This echoes his famous *cogito ergo sum*: “I think; therefore, I am.”

Later, in the eighteenth century, Gottfried Leibniz, co-creator along with Isaac Newton of the Calculus, attempted to improve Descartes’ argument. According to him, Descartes’ argument fails unless one first shows that it is possible for a supremely perfect being to exist. Leibniz argued that, since perfections cannot be analyzed objectively, it is impossible to demonstrate that perfections are incompatible – and he concluded that all perfections can co-exist together in a single entity, namely, God (Oppy, 2002).

This is the intellectual and historical framework Gödel used to devise his ideas. He very much admired Leibniz and attempted to improve his ontological argument. Some have questioned the validity of the underlying modal logic, while others have objected to his set axioms and definitions. That is all they can do to the Gödelian argument since they cannot find fault with his flawless reasoning. Some objectors adhere to Immanuel Kant’s position, who in the eighteenth century argued against ontological arguments in general stating that existence is not a predicate. That is, existence is not a property of individuals in the same way being blue or strong is; hence, existence cannot be proved (Small, 2006: 18). Perhaps the argument holds in propositional logic – the underlying logic of mathematics – but the argument certainly fails in modal logic, “a useful language in which to discuss God” (Small, 2006: 1).

Gödel’s argument is quite technical and perhaps inaccessible to the common philosopher or theologian since the ideas live in the symbolic realm of modal logic. In fact, Gödel’s choice of modal logic requires substantial training in formal systems and mathematics, but his reasoning is pristine. Furthermore, if the argument is sound, it does not settle the question of a personal God, which was part of Gödel’s ethos. Neither does it address the question of uniqueness, at least up to isomorphism. Nonetheless, even if his argument is not accepted as a proof because of the questionability of the axioms chosen, it still suggests a *via positiva* to understanding the idea of God rationally (Small, 2006: 28).
“However, as Bertrand Russell observed, it is much easier to be persuaded that ontological arguments are no good than it is to say exactly what is wrong with them” (Oppy, 2002). Yet, “[t]hose who find the assumptions of the ontological argument suspicious should ask themselves whether their suspicion is based [...] on an unwillingness to accept the conclusion of the argument” (Small, 2003: 25). Likewise, those in favor of the argument should ponder whether they have been lenient in their philosophical rigor. Ultimately, however, existence is independent of belief. We may argue for eternity whether God exists or not and it will not affect God’s existence. However, it may affect ours.

We should not be naïve and think we can convince any purportedly rational being to accept theism. In spite of all our efforts in attempting to rationally prove the existence of God, we must agree that we may fail to convince even a single obstinate atheist shrouding his arguments with scientific or philosophical jargon. What is remarkable about Gödel’s theological inclinations, however, is that whereas “ninety percent of philosophers these days consider it the business of philosophy to knock religion out of people’s heads,” said Gödel (Wang, 1996: 152), “he exploited the machinery of modern logic to reconstruct Leibniz’s ontological argument” (Yourgrau, 2005: 13).

Blaise Pascal, fundamental in the development of probability theory, might induce them to reconsider their position with his famous wager published in 1670:

> God is or He is not. Let us weigh the gain and the loss in selecting ‘God is.’ If you win, you win all. If you lose, you lose nothing. Therefore, bet unhesitatingly that He is. (Pensées)

Hence, as an exponent of theism, Gödel is sempiternally victorious.
References


Albert Einstein, Telegram to New York's Rabbi Herbert S. Goldstein, April 24, 1929.


Kurt Godel's Mathematical and Scientific Perspective of the Divine: A Rational Theology. by Hector Rosario, Ph.D. Department of Mathematics University of Puerto Rico, Mayaguez Campus November 7, 2006. Kurt Godel, the renowned mathematical logician of the twentieth century, had a profound rational theology worthy of serious consideration by scientists, mathematicians, and other thinkers inclined to the use of reason and observation to draw conclusions. The world is rational, (Wang, 1996: 316) asserted Godel, evoking philosophical theism, according to which the order of the world reflects the order of... Kurt Godel's Incompleteness Theorem had some profound impacts on general thought. Probably as poorly understood and often misapplied as Luther, Kurt Godel made himself odious by mathematically proving that a system founded on axioms which are your basic assumptions upon which you build your understanding or theory or religion, etc. can never hope to find proof for the consistency of those initial axioms, and will therefore always be incomplete. This is called Godel's Incompleteness Theorem and this theorem caused a Reformation in logic philosophy. Just like Luther proved that salvation comes through faith and not works, Godel proved that the whole Truth can only be by Kurt Godel, the renowned mathematical logician of the twentieth century, had a profound rational theology worthy of serious consideration by scientists, mathematicians, and other thinkers inclined to the use of reason and observation to draw conclusions. The world is rational, (Wang, 1996: 316) asserted Godel, evoking philosophical theism, according to which the order of the world reflects the order of the supreme mind governing it. Godel is best known for his celebrated incompleteness theorems, perhaps some of the most profound and influential mathematical result Kurt Friedrich Gödel (/ˈɡɜrdəl/; German: [ˈkʊɐ̯d̥əl] (listen); April 28, 1906 – January 14, 1978) was a Austrian-German-American logician, mathematician, and analytic philosopher. Considered along with Aristotle and Gottlob Frege to be one of the most significant logicians in history, Godel had an immense effect upon scientific and philosophical thinking in the 20th century, a time when others such as Bertrand Russell, Alfred North Whitehead, and David Hilbert were analyzing the use of logic and